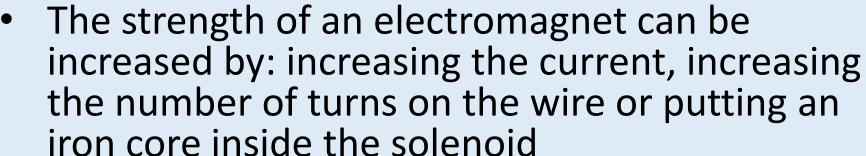

Lesson 1: Introduction to magnets

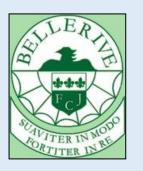
- Magnetism is a non-contact force
- Magnets have a magnetic field around them
- Magnets have a north pole and a south pole
- Like poles repel; unlike poles attract
- Iron, cobalt and nickel are magnetic materials

Lesson 2: Magnetic fields


- FCJ SUAVITER IN MORO
- A magnetic field is a region where magnetic materials experience a force
- A magnetic field can be drawn using magnetic field lines (lines of force)
- Magnetic field lines always point from the north pole to the south pole
- Compasses line up with magnetic fields
- The Earth has a magnetic field

Lesson 3: Electromagnets

- LILLER IN MODE FORTITER IN RE
- A current passing through a wire produces a magnetic field around the wire
- Magnets made from current carrying wires are called electromagnets
- An electromagnet made from a long coil of wire is called a solenoid
- The magnetic field of a solenoid is the same as that of a bar magnet
- Three important uses of electromagnets are electric motors, electric bells and relays


Lesson 4: Electromagnets practical

- A hazard is something that could cause harm
- Scientists need to manage the risk of hazards by planning to do things to reduce them
- Tables are used to organise data collected during investigations
- Graphs and bar charts are used to present data

Lesson 5: Magnetism test

Lesson 6: Static electricity

- When insulating objects are rubbed together negative electrons transfer from one object to another
- The object that gains electrons becomes negatively charged
- The object that loses electrons becomes positively charged
- All charged objects have an electric field around them
- Opposite charges attract and same charges repel

Lesson 7: Circuit components

Key points to learn:

The circuit symbols for some common

components are:

- Current is measured with an ammeter in amps, A
- Potential difference is measured with a voltmeter in volts, V

cell	
battery	- -
bulb	-
motor	_M _
voltmeter	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
ammeter	—A—
open switch	\display
closed switch	
buzzer	
resistor	

Lesson 8: Conductors and insulators

FCJ SULVITER IN MOOD FORTITER IN RE

- Current is a flow of negatively charged electrons
- Potential difference is the driving force to push the electrons around the circuit
- If you add cells together the total potential difference is the potential difference of each cell added

Lesson 9: Fruity batteries

TO THE IN MORE FORTITER IN ME

- Fruit can be used as a source of energy for an electrical circuit
- Independent variable variable I change in an investigation
- Dependent variable the variable that we measure and record in an investigation
- Control variable variables that are kept the same to ensure a fair test

Lesson 10: Series circuits

FCJ PORTITER IN MORE FORTITER IN ME

Key points to learn:

 In a series circuit the current is the same at any point

 In a series circuit the potential difference across all the components adds up to the potential difference of the cell/battery

 If one component breaks in a series circuit, the whole circuit will turn off

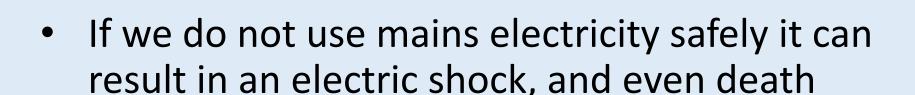
Lesson 11: Parallel circuits

- In a parallel circuit the total current from the cell/battery is the sum of the current along each branch (the current splits along the branches)
- In a parallel circuit the potential difference across each branch is the same
- In a parallel circuit if a component on one branch break, the components on the other branches will still work

Lesson 12: Resistance

FC J SUALITER IN MODO FORTITER IN RE

Key points to learn:


 Resistance opposes the flow of current and is measured in ohms, Ω


• Resistance (
$$\Omega$$
) = $\frac{potential\ differnece\ (V)}{current\ (A)}$

 The longer the piece of dough/wire, the greater the resistance

Lesson 13: Electrical safety



<u>Lesson 14: Badger assessment – Scrap heap</u> <u>challenge</u>

FORTITER IN MOTO

- A circuit diagram can be drawn to represent a scrap heap electromagnet
- Why an electromagnet can be used to separate and move different types of materials in a scrap yard
- How the strength of the electromagnet can be varied

Lesson 15: Electricity test

